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ABSTRACT
NSF-funded computing centers have primarily focused on delivering high-performance computing resources to academic researchers with the most computationally demanding applications. But now that computational science is so pervasive, there is a need for infrastructure that can serve more researchers and disciplines than just those at the peak of the HPC pyramid. Here we describe SDSC’s Comet system, which is scheduled for production in January 2015 and was designed to address the needs of a much larger and more expansive community of science – the “long tail of science”. Comet will have a peak performance of 2 petaflop/s, mostly delivered using Intel’s next generation Xeon processor. It will include some large-memory and GPU-accelerated nodes, node-local flash memory, 7 PB of Performance Storage, and 6 PB of Durable Storage. These features, together with the availability of high performance virtualization, will enable users to run complex, heterogeneous workloads on a single integrated resource.
Categories and Subject Descriptors
C.5.1 Super (very large) computers, K.6 Management of computing and information systems
General Terms
Design, Management
Keywords
High performance computing, high throughput computing, science gateways, virtualization, GPU, solid-state drive, parallel file system, scientific applications, user support
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For the past three decades, NSF-funded computing centers have designed and operated high-performance computing resources primarily for researchers with the most computationally demanding applications. But now that computational science is so pervasive, there is a need for infrastructure that can serve more researchers and disciplines than just those at the peak of the Branscomb Pyramid [1, 2]. XSEDE resources are not currently configured and operated to easily address the needs of this much larger and more expansive community of science - the “long tail of science”. 
The Comet system, scheduled for production in January 2015, will enable new modalities of computing and address the needs of the long tail of science. Comet will support established HPC users requiring homogeneous systems with access to high-performance parallel file systems. To support targeted new user communities, the design pays special attention to requirements for heterogeneous computing and custom software stacks.  Further scaling, to at least 10,000 users, is readily achievable via gateways. 
The Comet system design is based upon a vision of how cyberinfrastructure (CI) can reach a much larger segment of the U.S. research community.  National initiatives and reports, including the CIF21 [3, 4], and the ACCI task force reports [5] have gathered critical, cross-community requirements. Furthermore, a 2010 survey [6] of 5,000 NSF PIs and thus potential users of NSF’s CI, conducted by Indiana University and SDSC, identified tremendous unmet demand for new types of CI, listing small/modest-scale computing resources, data-centric resources, workflow support and virtual environments as critical capabilities not yet available at national resource sites. Similarly a 2009 workshop identified the requirements of “wide” user communities and their emerging computing modalities that are not well served by XSEDE resources [7].  
The Comet HPC system will:
· Deliver 2-petaflop/s of capacity for the 98% of XSEDE jobs (50% of XSEDE core-hours) that use fewer than 1,000 cores. (See XDMoD [8] and many recent studies [9-12].)  Comet will support larger jobs too, but its network is optimized for jobs of modest scale. 
· Provide 7 raw PB of Lustre-based Performance Storage at 200 GB/s bandwidth for both scratch and allocated persistent storage, as well as 6 raw PB of Durable Storage for data reliability.
· Enable community-supported custom software stacks through fully virtualized HPC clusters. This is essential when the XSEDE software stack cannot meet community needs. Advances in hardware and software allow these virtual clusters to operate at near-native InfiniBand bandwidth/latency.
· Ensure high throughput and responsiveness to users by using allocation/scheduling policies proven effective on Trestles. And have a “rapid-access” allocation to give users access within one day of their requests.
· Build upon and expand science gateway usage in XSEDE, via gateway-friendly software and operating policies.
· Provide high-speed internal and external communications to support data transfers to/from/between these systems and external research users/institutions.
The IU FutureGrid [13] team is contributing in several technical areas, including (i) easy “on-ramps” for new users, (ii) virtualization to allow application developers to create customized software environments, (iii) support for new software technologies, such as Hadoop, (iv) support for gateway development, and (v) bridging to its user base, which is dominated by computer scientists. 
Our focus on inclusivity and reaching new users and communities, particularly via gateways, will have broad impacts across scientific domains and underrepresented constituencies. Training modules related to the new technologies introduced into XSEDE by Comet will be contributed to XSEDE. The XSEDE Campus Champions, Novel and Innovative Projects, and MSI Outreach programs will be leveraged to further broaden participation.
RESOURCE SPECIFICATION
Comet will meet existing needs while laying new foundations to expand the range of computational science that can be undertaken using emerging modalities of computing. We have designed these systems with our key vendor partners, Dell, Intel and Aeon, to support the typical mix of batch-based HPC while also enabling science gateways, high-performance virtualized clusters, and cloud-style computing. The integrated system architecture is shown in Figure 1 and summarized here.
Compute System 
Comet is designed to support modest-scale jobs that constitute the majority of current and projected computation workload in XSEDE [8]. It will be a heterogeneous system, consisting primarily of standard compute nodes with next-generation Intel Xeon processors, along with 36 NVIDIA GPU-accelerated nodes and four large-memory nodes. The system is expected to have a peak performance of 2 petaflop/s, over 95% of which comes from Intel processors and the balance from GPUs.
(Note that performance parameters of the next-generation Intel Xeon processor remain proprietary and cannot be disclosed in this paper. Key information such as the clock speed, cores and flops per socket, and number of nodes will be disclosed as soon as possible.)
Each Comet standard node will have two Intel processors, 128 GB of DDR4 memory, and two 200-GB flash drives. The latter will support the operating system and provide fast scratch space.
Thirty-six of the standard nodes will each be augmented with four next-generation NVIDIA GPUs. Each of the four large-memory nodes will have four of the same next-generation Intel processors as in the standard nodes and 1.5 TB of DDR4 memory.
Interconnect and Networking 
Each compute rack will have full-bisection InfiniBand FDR connectivity across 72 nodes in the rack. The overall system will have a 4:1 bisection FDR interconnect across the racks. 
Each FDR link is rated at 7 GB/s. The MPI latency of the network is projected to be 2.4 µs. Each rack will use seven 36-port Mellanox FDR edge switches with a single FDR connection per node. The edge switches, in turn, will be connected to mid-tier switches via FDR links and then to the FDR core switch by additional FDR links. The FDR core switch will bridge to the Ethernet-based Performance Storage using Mellanox 36-port Virtual Protocol Interface (VPI) switches.
Comet will be integrated into the XSEDE network at a minimum of 10-Gbps connectivity and will reach a broad user base via a 100-Gbps link to Internet2 and ESnet. Bandwidth will be reservable on the XSEDE or 100-Gbps links for large-scale data transfers.  On-demand Secure Circuits and Advance Reservation System (OSCARS) installations at UCSD, Internet2, ESnet, and other partners will facilitate end-to-end connections across the country. UCSD is one of the campuses chosen for the NSF Dynamic Network System (DYNES) installation [14], which provides OSCARS-configurable, reserved-circuit, guaranteed-bandwidth connections to support large, long-distance scientific data flows [15].
Storage Systems 
Comet will include Performance Storage, a high-performance Lustre parallel file system based on an evolution of SDSC’s Data Oasis design [16]. This system will provide 7 raw PB of scratch disk space and persistent allocated storage accessible at 200 GB/s. In addition, Durable Storage will provide another 6 raw PB of disk to store a second copy of critical user data, including persistent Performance Storage data.
SDSC pioneered high-performance storage over Ethernet fabrics [16]. Ethernet supports campus-area and wide-area networking, while InfiniBand does not without very specialized equipment. Thus, Ethernet is the fabric of choice when making high-performance storage accessible beyond the data center. The rapid deployment of 100 GbE in Internet2 and at numerous research institutions around the country, including UCSD, indicates that higher-speed networking capability will become common over the next five years. The Comet networking infrastructure pays special attention to creating appropriately sized bridges between our Ethernet and InfiniBand fabrics. The design will allow large (100-GbE) wide-area connections to integrate easily into our storage, compute, and data systems.
Data Oasis, SDSC’s high-performance storage architecture in production on Trestles and Gordon [16], motivates the design for the Lustre-based Performance Storage that will be used by Comet. This storage will be part of a 40-GbE fabric accessed via 4 Mellanox IB-Ethernet gateways to create a total of 72 40-GbE ports in the 360-GB/s IB-Ethernet bridge. The basic building block will be an Object Storage Server (OSS), consisting of a dual-socket, Intel processor with 64 GB of memory, dual 40-GbE network cards, and 216 TB via 36 x 6-TB SAS drives. Each server will be capable of delivering more than 6.3 GB/s between network and disk.  Performance Storage will have 32 OSSes for an aggregate capacity of 7 raw PB and a sustained performance of 200 GB/s. 
Protection from data loss is especially critical in a data-intensive environment, and we will re-deploy SDSC’s current Data Oasis system (6 raw PB, 100 GB/s) as Durable Storage to provide a second copy of all data that is part of users’ storage allocations (non-scratch Performance Storage). The storage will be accessed over the same storage fabric described above
Comet includes additional service nodes and storage systems to ensure a robust, usable environment for users. Comet will include: 4x 40 Gbps data mover nodes that host GridFTP, serve Globus Online and related software; login nodes operated as a round robin; nodes for Rocks systems management; virtualized servers for hosting user/community gateway front ends and related application services; mirrored NFS servers for user home file systems; and an additional NFS storage repository specifically for virtual cluster images.
HIGH-PERFORMANCE VIRTUALIZATION 
Virtualization provides a way to run systems and applications environments significantly different than those on the production system. The software stack, from operating system to application, is packaged within a single image file that can be instantiated on the production system. Our partner FutureGrid will have the lead role in working with targeted user communities to develop such custom environments and prepare them for use on the production Comet.
Performance within virtualized environments for applications that extend beyond a node has been a major barrier, thus far, to adoption of this technology in HPC [17-22]. Our testing last year confirmed that this was still the case for commercial services like Amazon EC2. However Single Root I/O Virtualization (SR-IOV) within InfiniBand adapters [23] will be available in Comet. This technology reduces virtualization overhead to modest levels and dramatically opens the landscape for both single-node and highly parallel applications to run efficiently in virtual environments on Comet [24]. 
We will use Rocks native functionality and OpenStack Compute (Nova) to manage virtual machines (VMs). Nova provides a graphical interface for users to manage images and VM instances. VMs will be provisioned as predefined compute appliances based on application needs. They will be incorporated into the batch system where users can request them like any other queue. Thus, any user or gateway that prefers a custom software stack and environment can request a VM and run without special provisioning.
Virtualization can provide increased flexibility for science gateway developers and users, as gateways become more sophisticated and move beyond simple web-based job submission to HPC systems. For example, NSGPortal [25] allows users to submit C++ code to describe customized neuronal models, which are then compiled and run within the NEURON simulation environment. However, this can be a security risk and typically is not allowed on HPC systems. By virtualizing the environment, the “untrusted” code can be isolated from the rest of the cluster and be executed safely.
PERFORMANCE AND INNOVATION FOR SCIENCE AND ENGINEERING APPLICATIONS
Comet will support the vast majority of existing XSEDE users with more capacity on faster processors. It also will provide thousands of new users access to HPC via gateways and virtualized software environments.
High-throughput computing
During 2012, 98% of XSEDE jobs ran on fewer than 1,000 cores, and 51% of all service units consumed were from jobs on fewer than 1,000 cores [8]. Comet has been designed to enable high throughput for this vast majority of modest-scale jobs, yet still will provide good performance for occasional jobs at higher core counts. Table 1 lists example analyses and codes that will excel on Comet.
Standard nodes for most XSEDE applications
Most applications and analyses that currently run on XSEDE resources will run on the standard nodes of Comet and achieve superior performance. These analyses encompass those in the physical science and engineering disciplines with years of experience using HPC as well as those in disciplines such as biology and social science that are relatively new to HPC. Through an interface to the job manager of the OSG, Comet will become available to another, large user community.
Biologists, chemists, and Earth scientists are doing their analyses on Gordon and Trestles through the convenience of compute-processing gateways. All of these analyses will run well on the standard nodes of Comet.
In all fields of science and engineering, parameter scans constitute a common workflow. They can involve thousands of jobs run in an embarrassingly parallel fashion with individual jobs typically running on a few cores or even serially. The increased throughput provided by the Comet standard nodes will allow more extensive scans, and many will run efficiently in the shared-job queue.
Table 1. Example analyses and codes that will excel on Comet

	Type of Analysis
	Typical Codes
	Nodes Used

	Phylogenetic tree 
inference
	BEAST, MrBayes, RAxML
	Standard

	Neural simulation
	GENESIS, NEURON
	Standard

	High-frequency 
trading analysis
	Custom
	Standard + flash

	Climate simulation
	SAM-MMF, WRF
	Standard

	Visualizing 
simulation output
	VisIt, ParaView
	Standard

	Analyses requiring 
virtualization
	Custom
	Standard

	Quantum chemistry
	Gaussian, Q-Chem
	Standard + flash, 
large memory

	Structural analysis
	Abaqus
	Standard + flash, 
large memory

	De novo assembly 
of genomes
	SOAPdenovo2, 
Velvet
	Large memory

	Molecular dynamics
	Amber, CHARMM, Gromacs, NAMD
	GPU-accelerated



Flash drives for applications with large scratch needs or large file counts
Most quantum chemistry codes, e.g., Gaussian [26] and Q-Chem [27], create temporary scratch files to store one- and two-electron integrals. Storing these integrals on locally attached flash memory instead of disk can greatly improve performance and avoid overwhelming the Lustre metadata servers. Structural mechanics codes, such as Abaqus [28], also benefit from storing the stiffness matrix on flash memory. Such performance benefits have attracted many XSEDE users to run on Gordon and Trestles, via the command line or the GridChem gateway. Similar benefits will be provided by the flash memory on every Comet node.
A noteworthy example is the work of Alan Aspuru-Guzik’s group at Harvard. As part of the Clean Energy Project [29], his team is screening millions of organic semiconductors to find better photovoltaic materials for solar cells. Each semiconductor is analyzed in a single Q-Chem job on either Gordon or Trestles. Hundreds of serial jobs run at a time, all using flash memory to improve performance and minimize the impact on other users that disk I/O would entail. This is a massive undertaking that will take years to complete, and the availability of Comet will accelerate the search.
Within academic finance, Mao Ye of UIUC is analyzing high frequency trading on Gordon to identify abnormal trading activity and suggest regulatory solutions. After performance tuning by SDSC staff, Ye’s software now runs more than 5,000 times faster, so he can analyze the combined NYSE, NASDAQ and BATS exchanges (~ 8,000 stocks) for the heaviest days of trading in two hours using a single node of Gordon. The new approach requires the generation of nearly 100,000 intermediate files and will make very heavy use of Comet’s flash drives.
Large memory applications can use Comet’s 1.5 TB nodes
The standard nodes of Comet will have 128 GB of memory each, twice that on Gordon and Trestles. Most shared-memory codes that require access to specialized large-memory XSEDE resources will run on Comet’s standard nodes but do so faster. Comet will also have four nodes with even more memory: 1.5 TB each. These large-memory nodes will enable analyses with exceptionally large shared-memory requirements. 
Determining the genome sequence of a species for the first time requires de novo assembly of the so-called short reads produced by current DNA sequencers. For vertebrate genomes, the assemblers require large amounts of shared memory: hundreds of GB for SOAPdenovo2 [30] and more than a TB for Velvet [31]. As new sequencers producing longer reads become available, these memory requirements will grow. The 1.5-TB nodes on Comet will be capable of performing assemblies using both applications. Moreover, all but the first of the four steps in a SOAPdenovo2 assembly will run on the 128-GB nodes of Comet..
Researchers from Cornell used Abaqus on Gordon to model the response of a rat vertebra to stress and hope to model human vertebrae. An attempted high-resolution analysis using 750 GB of flash memory was still not complete after 100 hours. However, the same analysis using 750 GB of DRAM aggregated across 16 Gordon nodes with the vSMP software completed in 10 hours. This analysis will run even faster on a 1.5-TB node of Comet.
Vectorizable applications will use Comet’s GPU-accelerated nodes
Applications that can be vectorized are good candidates for running on GPUs rather than on x86 CPUs. Many molecular dynamics codes have vectorizable kernels. Four codes that are heavily used within XSEDE – Amber [32, 33], CHARMM [34], Gromacs [35], and NAMD [36] – have been implemented on NVIDIA GPUs and run faster on them than on x86 CPUs. To support such applications, Comet will include 36 GPU-accelerated nodes, each with four GPUs.
Amber PMEMD, in particular, has been highly optimized and achieves outstanding performance running only on the GPU, not the CPU. For a standard benchmark with 23k atoms, Amber PMEMD runs about four times faster on a single NVIDIA K20 GPU as on a single node of Gordon [37]. We expect similar benefits for each GPU in Comet. Moreover, four independent simulations can be run on the GPUs in a Comet node with no loss of speed. This cost-effective increase in throughput will allow better statistics in studies that use enhanced sampling methods. 
Gateways
Gateways provide browser-based access to remote resources for compute processing, data processing, or data serving. SDSC is a leader in deploying and supporting all of these types of gateways within XSEDE. SDSC pioneered gateway-friendly operational policies on Trestles, extended them to Gordon, and will adopt similar policies for Comet. For compute- and data-processing gateways, these policies include flexible allocations in response to growing demand, quick turnaround for short jobs, a long-job queue for codes without restart capability, and a shared-job queue to allow cost-effective execution of codes that do not scale to a full node.
Compute- and data-processing gateways have proven ideal to help new users run community codes on XSEDE resources. Such gateways are particularly effective for researchers who only occasionally compute. They do not need to get individual allocations, and the browser interface relieves them from having to learn about HPC details, such as parallelization and job scheduling. Users simply select code options and upload their data files via the interface without logging onto an HPC system.
During 2012, 66% of all XSEDE gateway usage in unnormalized core hours was on Gordon and Trestles. Currently SDSC provides access to computationally demanding community codes running on Gordon and Trestles via five NSF-funded gateways: 
· CIPRES [38] runs BEAST [39], MrBayes [40], and RAxML [41] to infer phylogenetic trees;
· CyberGIS [42] runs pRasterBlaster [43] to project maps and TauDEM [44] to determine water flow from topography;
· GridChem [45] runs Gaussian [26] to calculate electronic structures;
· The Neuroscience Gateway [25] runs GENESIS [46] and NEURON [47] to model individual neurons and networks of neurons; and
· UltraScan [48] runs its eponymous software to analyze ultracentrifugation experiments.
The much larger throughput of Comet will allow these existing compute-processing gateways as well as emerging ones to serve many more users and jobs.
USER SUPPORT
The new users, communities, and modalities of computing that we will promote through Comet require distinct competencies and new models of support. Two that are particularly relevant – new users and gateway communities – are elaborated upon here.
New users
Relevant and up-to-date documentation, targeted training, and a well-staffed help desk, are essential to assist new users in getting started in HPC. Our documentation and training will highlight the unique characteristics of Comet with example-based materials and will be integrated into the XSEDE user portal to provide ease of access. Widely used applications, such as Matlab, Hadoop, and R, will be documented with step-by-step instructions, sample scripts, and screenshots wherever applicable. The emphasis will be on running applications in parallel (e.g., MATLAB Distributed Computing Server and the R multicore package) and other HPC related topics. Much of this material has already been developed for Gordon and Trestles, and we will leverage this foundation.
A large set of open-source software packages will be provided on both resources, as is the case on Gordon and Trestles today. These will be made available to users via the simple Modules environment. Since commercial packages can be expensive for large-scale HPC systems, we will carefully select only those that complement the capabilities of open-source software and are not often available on other national HPC systems. Populating the system with appropriate software is critical to broadening the user base and bridging from campus to national-scale resources.
New user training on Comet will cover programming/debugging tools (DDT), compilers, code parallelization (MPI, OpenMP, OpenACC), use of the batch systems, as well as software like MATLAB, which is a familiar development and run-time environment for many new user communities. We will leverage XSEDE’s excellent archived courses and tutorials covering basic HPC topics.
The XSEDE start-up allocation process can be a barrier to some new user communities, especially when all they want is to test-drive the HPC systems to see if they will work for them. We intend to work with XSEDE on a new “rapid-access” allocations approach that will cut the wait time for an introductory test account from 1-2 weeks to just one day. Similar to what is done now for training accounts, we will pre-populate a fixed number of trial accounts to avoid having to create one for each new request. The allocation amounts will be limited (much less than start-up accounts), but sufficient for evaluating the software environment and running simple test jobs.
XSEDE NIPS (Novel and Innovative Project Support) and Campus Champions have proven to be effective ways to bring in new users and communities from participating campuses,. We will work with both programs to identify and support new users and communities most likely to benefit from Comet’s powerful architecture.
Gateway communities
By providing web front-ends to domain-specific applications and data on XSEDE, science gateways are enabling large, self-identified research communities to access national resources through a common interface configured for ease of use [49]. While leveraging gateways will be crucial, especially to achieve NSF’s objectives with respect to inclusivity and supporting large numbers of users and new communities, we will not have the resources to develop gateways per se, which would be best done by the disciplinary communities themselves. However, we will train XSEDE gateway developers to take full advantage of Comet capabilities for their communities and obtain their guidance in ensuring that Comet is gateway-friendly.
Over the last several years, SDSC has led development of innovative allocations policies, software, security protocols, and user access/accounting to enable creation of gateways such as CIPRES and GridChem. We will continue this work by reaching out to new communities and assisting them in building such gateways or porting their current web portal environments to Comet. Specifically, we will: (1) deploy common software elements needed to support gateway functionality on Comet; (2) provide dedicated nodes for virtual machines, integrated in the system, for gateway developers to host gateways/portals; (3) work with XSEDE to establish gateway-friendly allocations policies such as flexibility/elasticity in allocated SUs since community demand is hard to predict, while ensuring peer review and accountability for the science conducted; (4) configure scheduling policies to support large numbers of jobs from gateways; (5) support shared-node runs for multiple small jobs that can be packed into a single node; (6) support long-running jobs (current practice on Trestles/Gordon); and (7) augment limited resources with targeted support/training for gateway developers and community trainers through venues like the Gateway Science Institute [50] XSEDE ECSS, and communities that express interest in migrating to the gateway model.
Gateways are becoming increasingly sophisticated making it possible, for example, for users to compile user code or specify complex workflows through the gateway [25, 51]. This increased functionality also implies a more flexible software stack specification—different gateways may require different software stacks. The FutureGrid team will assist in providing support for an “on-ramp” environment on Comet where gateway developers can use virtualization to develop these specialized software stacks/images. Once developed and tested, they can be migrated to production where they can execute within virtualized containers. We will allocate 72 Comet nodes for this on-ramp effort using the XSEDE start-up and educational allocation mechanisms.
ALLOCATION POLICIES
Comet will be allocated via the XRAC allocation process, and 90% of its available cycles will be allocated to XSEDE users. We project at least 10,000 users on Comet (although this number could be substantially higher as gateways continue to gain adoption).
Comet will be operated to ensure high throughput for a large number of users with modest-scale jobs. SDSC proposed the Trestles system in 2010 with these objectives and pioneered a number of allocations and scheduling policies to accomplish them [9, 52, 53]. We will: (1) limit the amount of time any single project can be allocated to ~2% of available resources (gateways will be excepted as they represent many users); (2) limit jobs sizes to <2,000 cores, with exceptions allowed by special request, (3) maintain utilization at slightly lower levels than most HPC systems to improve throughput/productivity [9]; (4) maintain a modest allocation contingency to allow generous start-up allocations and elasticity for gateway allocations (with hard-to-predict usage); (5) proactively monitor queue wait times and expansion factors; (6) implement topology-aware scheduling algorithms to optimize internode performance; (7) enable short-pool, user-settable and on-demand reservations [52]; (8) define a pool of nodes for development/debugging, available on short notice via the scheduler; and (9) establish metrics for user access and throughput to assess the effectiveness of our procedures.
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